Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

Identifieur interne : 001424 ( Main/Repository ); précédent : 001423; suivant : 001425

Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

Auteurs : RBID : Pascal:12-0297941

Descripteurs français

English descriptors

Abstract

Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0297941

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks</title>
<author>
<name sortKey="Rathmell, Aaron R" uniqKey="Rathmell A">Aaron R. Rathmell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Duke University, 124 Science Drive, Box 90354 Durham</s1>
<s2>North Carolina 27708</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>North Carolina 27708</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Minh" uniqKey="Nguyen M">Minh Nguyen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Duke University, 124 Science Drive, Box 90354 Durham</s1>
<s2>North Carolina 27708</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>North Carolina 27708</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MIAOFANG CHI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Microscopy Group, Oak Ridge National Laboratory, 1 Bethel Valley Road, Building 4515, MS 6064 Oak Ridge</s1>
<s2>Tennessee 37831</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wiley, Benjamin J" uniqKey="Wiley B">Benjamin J. Wiley</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Duke University, 124 Science Drive, Box 90354 Durham</s1>
<s2>North Carolina 27708</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>North Carolina 27708</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0297941</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0297941 INIST</idno>
<idno type="RBID">Pascal:12-0297941</idno>
<idno type="wicri:Area/Main/Corpus">001B06</idno>
<idno type="wicri:Area/Main/Repository">001424</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coatings</term>
<term>Copper</term>
<term>Electrochromic displays</term>
<term>Electrochromism</term>
<term>Indium</term>
<term>Indium oxide</term>
<term>Light emitting diodes</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Nickel</term>
<term>Organic light emitting diodes</term>
<term>Oxidation</term>
<term>Sheet resistivity</term>
<term>Silver</term>
<term>Solar cells</term>
<term>Temperature dependence</term>
<term>Thin films</term>
<term>Time dependence</term>
<term>Tin oxide</term>
<term>Transparent material</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Oxydation</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Cuivre</term>
<term>Couche mince</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Cellule solaire</term>
<term>Diode électroluminescente organique</term>
<term>Diode électroluminescente</term>
<term>Electrochromisme</term>
<term>Revêtement</term>
<term>Nickel</term>
<term>Dépendance temps</term>
<term>Matériau transparent</term>
<term>Dépendance température</term>
<term>Résistivité couche</term>
<term>Argent</term>
<term>Affichage électrochromique</term>
<term>Indium</term>
<term>Ni</term>
<term>In</term>
<term>8107V</term>
<term>8107B</term>
<term>8460J</term>
<term>8560J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
<term>Nickel</term>
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RATHMELL (Aaron R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NGUYEN (Minh)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MIAOFANG CHI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WILEY (Benjamin J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, Duke University, 124 Science Drive, Box 90354 Durham</s1>
<s2>North Carolina 27708</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Microscopy Group, Oak Ridge National Laboratory, 1 Bethel Valley Road, Building 4515, MS 6064 Oak Ridge</s1>
<s2>Tennessee 37831</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>3193-3199</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000507963260900</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>50 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0297941</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Oxydation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Oxidation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diode électroluminescente organique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Organic light emitting diodes</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Electrochromisme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Electrochromism</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Revêtement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Coatings</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nickel</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nickel</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Dépendance temps</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Time dependence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Résistivité couche</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Sheet resistivity</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Affichage électrochromique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Electrochromic displays</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Ni</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8560J</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>226</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001424 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001424 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0297941
   |texte=   Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024